Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[[diaquanickel(II)]- μ-(4-pyridysulfanyl)-acetato-nickel(II)-tri- μ-(4-pyridysulfanyl)acetato]

Yong-Qing Huang, ${ }^{\text {a }}$ Hui Zhang, ${ }^{\text {a }}$ Jian-Gu Chen, ${ }^{\text {a }}$ Wei Zou ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\mathbf{b}}$ *
${ }^{\text {a }}$ State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, People's Republic of China, and
${ }^{\mathbf{b}}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.048$
$w R$ factor $=0.123$
Data-to-parameter ratio $=15.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

In the linear-chain title compound, $\left[\mathrm{Ni}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{2} \mathrm{~S}\right)_{4}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, the two Ni atoms occupy inversion centers: one is covalently bonded to two monodentate carboxylate anions, and coordinated by two water molecules and by the pyridyl N atoms of another two carboxylate anions; the second Ni atom is chelated by two carboxylate anions and is also coordinated by the pyridyl N atoms of two carboxylate anions. Both Ni atoms are six-coordinate in distorted octahedral geometries.

Comment

With a metal salt-acid stoichiometry of 1:1:, the reaction of nickel acetate and pyridyl-4-thiolylacetic acid under hydrothermal conditions yields aquabis(pyridyl-4-thiolylacetato)nickel, $\left[\mathrm{Ni}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{2} \mathrm{~S}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$ (Huang et al., 2004). With a 1:2 stoichiometry, the compound has an identical empirical formula, but the compound is $\left[\mathrm{Ni}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{2} \mathrm{~S}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ $\left[\mathrm{Ni}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{2} \mathrm{~S}\right)_{2}\right]$, (I) (Fig. 1).

(I)

The two six-coordinate Ni atoms occupy inversion centers in distorted octahedral geometries. One of them is covalently bonded to two monodentate carboxylate anions; this Ni atom is also coordinated by two water molecules and by the pyridyl N atoms of another two carboxylate anions. The other Ni atom is chelated by two carboxylate anions and is also coordinated by the pyridyl N atoms of two carboxylate anions (Fig. 1). The
bridging behavior of the two carboxylate anions gives rise to a linear-chain structure.

Experimental

Nickel acetate ($50 \mathrm{mg}, 0.4 \mathrm{mmol}$), 4-pyridylthioacetic acid (68 mg , 0.4 mmol) and sodium hydroxide ($16 \mathrm{mg}, 0.4 \mathrm{mmol}$) were dissolved in a water-ethanol ($12: 5 \mathrm{v} / \mathrm{v}$) mixture (17 ml). The solution was placed in a Teflon-lined stainless-steel bomb (23 ml). The bomb was heated at 393 K for 12 h and then cooled to room temperature. CHN elemental analysis on the pale-blue platelets found (calculated) for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{NiO}_{5} \mathrm{~S}_{2}$ (\%): C 40.47 (40.70), H 3.41 (3.42), $\mathrm{N} 6.34 \%$ (6.78)\%. IR (KBr): 3427, 2966,2921, 1598, 1577, 1562, 1486, 1430, $1373,1218,1150,1115,1064,1011,898,817,803,723,692,587,503 \mathrm{~cm}^{-1}$.

Crystal data

$\left[\mathrm{Ni}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{2} \mathrm{~S}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=826.20$
Monoclinic, $P 2_{\mathrm{f}} / a$
$a=15.775$ (1) A
$b=5.7314$ (4) \AA
$c=16.950$ (1) \AA
$\beta=97.726(1)^{\circ}$
$V=1518.6(2) \AA^{3}$
$Z=2$
$D_{x}=1.807 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3044
reflections
$\theta=2.4-28.3^{\circ}$
$\mu=1.58 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, pale blue
$0.19 \times 0.13 \times 0.03 \mathrm{~mm}$

Data collection

Bruker SMART APEX area-	3436 independent reflections
detector diffractometer	3052 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.029$
Absorption correction: multi-scan	$\theta_{\max }=27.5^{\circ}$
$\quad(S A D A B S ;$ Bruker, 2002)	$h=-20 \rightarrow 19$
$T_{\min }=0.791, T_{\max }=0.954$	$k=-7 \rightarrow 5$
8645 measured reflections	$l=-21 \rightarrow 22$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.123$
$S=1.13$
3436 reflections
228 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0641 P)^{2}\right. \\
& \quad+0.8297 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.69 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.44 \mathrm{e}^{-3}
\end{aligned}
$$

3436 independent reflections
s with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$h=-20 \rightarrow 19$
$k=-7 \rightarrow 5$
$l=-21 \rightarrow 22$

Figure 1
ORTEPII (Johnson, 1976) plot of (I) with displacement ellipsoids at the 50% probability level. H atoms are drawn as spheres of arbitrary radii. [Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $1-x, 1-y, 2-z$.]

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 w-\mathrm{H} 1 w 2 \cdots \mathrm{O}^{\text {iii }}$	$0.85(1)$	$2.15(2)$	$2.943(3)$	$155(4)$
$\mathrm{O} 1 w-\mathrm{H} 1 w 1 \cdots 4^{\mathrm{ii}}$	$0.85(1)$	$1.82(2)$	$2.648(3)$	$163(4)$

Symmetry codes: (ii) $1-x, 1-y, 2-z$; (iii) $1-x, 2-y, 2-z$.

The water H atoms were located in a difference map and refined with distance restraints of $\mathrm{O}-\mathrm{H}=0.85$ (1) \AA and $\mathrm{H} \cdots \mathrm{H}=1.39$ (1) \AA. The aromatic $(\mathrm{C}-\mathrm{H}=0.93 \AA)$ and aliphatic $(\mathrm{C}-\mathrm{H}=0.97 \AA) \mathrm{H}$ atoms were placed at calculated positions and refined in the ridingmodel approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Science Foundation of China (20171037 and 20073034), the Fujian Province Science Foundation (2002F016) and the University of Malaya for supporting this study.

References

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Huang, Y.-Q., Zhang, H., Chen, J.-G., Zou, W. \& Ng, S. W. (2004). Acta Cryst. E60, m933-m934.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

